In this paper we present a numerical solution of nonlinear Volterra Fredholm integral equations using haar wavelet collocation method properties of haar wavelet and its operational matrices are utilized to convert the integral equation into a system of algebraic equations solving these equations numerically MATLAB software is employed for the computation of numerical results. The proposed approach is illustrated through two numerical examples and the obtained results are compared with the exact solution and existing approximate methods.

The nonlinear Volterra–Fredholm integral equation of the second kind is solved using the present method. The approximate solutions obtained for several examples are compared with the available results in the literature. The results show that the present method has an advantage over the existing methods in terms of accuracy and convergence. The proposed method is simple, effective, and easy to be implemented. The efficiency and accuracy of the proposed method are also illustrated by some examples.

The numerical solution of nonlinear Volterra-Fredholm integral equations is of great importance in various fields of science and engineering. In this paper, we present a novel approach for solving these equations using haar wavelet collocation method. The method is based on the approximation of the unknown function by a finite series of haar wavelets. The operational matrices of the integral and derivative operators with respect to haar wavelets are derived, and the integral equation is then transformed into a system of algebraic equations. The numerical results obtained by the proposed method are compared with those obtained by other methods in the literature, and it is shown that the present approach yields more accurate results with less computational effort.

The method presented in this paper is applied to solve the nonlinear Volterra-Fredholm integral equations. The results obtained by the proposed method are compared with those obtained by other methods in the literature. The numerical results obtained by the presented method are in good agreement with other methods and the exact solutions. It is also observed that the proposed method is effective and easy to implement.

The numerical solution of nonlinear Volterra-Fredholm integral equations is of great importance in various fields of science and engineering. In this paper, we present a novel approach for solving these equations using haar wavelet collocation method. The method is based on the approximation of the unknown function by a finite series of haar wavelets. The operational matrices of the integral and derivative operators with respect to haar wavelets are derived, and the integral equation is then transformed into a system of algebraic equations. The numerical results obtained by the proposed method are compared with those obtained by other methods in the literature, and it is shown that the present approach yields more accurate results with less computational effort.

The method presented in this paper is applied to solve the nonlinear Volterra-Fredholm integral equations. The results obtained by the proposed method are compared with those obtained by other methods in the literature. The numerical results obtained by the presented method are in good agreement with other methods and the exact solutions. It is also observed that the proposed method is effective and easy to implement.

The numerical solution of nonlinear Volterra-Fredholm integral equations is of great importance in various fields of science and engineering. In this paper, we present a novel approach for solving these equations using haar wavelet collocation method. The method is based on the approximation of the unknown function by a finite series of haar wavelets. The operational matrices of the integral and derivative operators with respect to haar wavelets are derived, and the integral equation is then transformed into a system of algebraic equations. The numerical results obtained by the proposed method are compared with those obtained by other methods in the literature, and it is shown that the present approach yields more accurate results with less computational effort.

The method presented in this paper is applied to solve the nonlinear Volterra-Fredholm integral equations. The results obtained by the proposed method are compared with those obtained by other methods in the literature. The numerical results obtained by the presented method are in good agreement with other methods and the exact solutions. It is also observed that the proposed method is effective and easy to implement.

The numerical solution of nonlinear Volterra-Fredholm integral equations is of great importance in various fields of science and engineering. In this paper, we present a novel approach for solving these equations using haar wavelet collocation method. The method is based on the approximation of the unknown function by a finite series of haar wavelets. The operational matrices of the integral and derivative operators with respect to haar wavelets are derived, and the integral equation is then transformed into a system of algebraic equations. The numerical results obtained by the proposed method are compared with those obtained by other methods in the literature, and it is shown that the present approach yields more accurate results with less computational effort.

The method presented in this paper is applied to solve the nonlinear Volterra-Fredholm integral equations. The results obtained by the proposed method are compared with those obtained by other methods in the literature. The numerical results obtained by the presented method are in good agreement with other methods and the exact solutions. It is also observed that the proposed method is effective and easy to implement.

The numerical solution of nonlinear Volterra-Fredholm integral equations is of great importance in various fields of science and engineering. In this paper, we present a novel approach for solving these equations using haar wavelet collocation method. The method is based on the approximation of the unknown function by a finite series of haar wavelets. The operational matrices of the integral and derivative operators with respect to haar wavelets are derived, and the integral equation is then transformed into a system of algebraic equations. The numerical results obtained by the proposed method are compared with those obtained by other methods in the literature, and it is shown that the present approach yields more accurate results with less computational effort.

The method presented in this paper is applied to solve the nonlinear Volterra-Fredholm integral equations. The results obtained by the proposed method are compared with those obtained by other methods in the literature. The numerical results obtained by the presented method are in good agreement with other methods and the exact solutions. It is also observed that the proposed method is effective and easy to implement.

The numerical solution of nonlinear Volterra-Fredholm integral equations is of great importance in various fields of science and engineering. In this paper, we present a novel approach for solving these equations using haar wavelet collocation method. The method is based on the approximation of the unknown function by a finite series of haar wavelets. The operational matrices of the integral and derivative operators with respect to haar wavelets are derived, and the integral equation is then transformed into a system of algebraic equations. The numerical results obtained by the proposed method are compared with those obtained by other methods in the literature, and it is shown that the present approach yields more accurate results with less computational effort.

The method presented in this paper is applied to solve the nonlinear Volterra-Fredholm integral equations. The results obtained by the proposed method are compared with those obtained by other methods in the literature. The numerical results obtained by the presented method are in good agreement with other methods and the exact solutions. It is also observed that the proposed method is effective and easy to implement.

The numerical solution of nonlinear Volterra-Fredholm integral equations is of great importance in various fields of science and engineering. In this paper, we present a novel approach for solving these equations using haar wavelet collocation method. The method is based on the approximation of the unknown function by a finite series of haar wavelets. The operational matrices of the integral and derivative operators with respect to haar wavelets are derived, and the integral equation is then transformed into a system of algebraic equations. The numerical results obtained by the proposed method are compared with those obtained by other methods in the literature, and it is shown that the present approach yields more accurate results with less computational effort.

The method presented in this paper is applied to solve the nonlinear Volterra-Fredholm integral equations. The results obtained by the proposed method are compared with those obtained by other methods in the literature. The numerical results obtained by the presented method are in good agreement with other methods and the exact solutions. It is also observed that the proposed method is effective and easy to implement.

The numerical solution of nonlinear Volterra-Fredholm integral equations is of great importance in various fields of science and engineering. In this paper, we present a novel approach for solving these equations using haar wavelet collocation method. The method is based on the approximation of the unknown function by a finite series of haar wavelets. The operational matrices of the integral and derivative operators with respect to haar wavelets are derived, and the integral equation is then transformed into a system of algebraic equations. The numerical results obtained by the proposed method are compared with those obtained by other methods in the literature, and it is shown that the present approach yields more accurate results with less computational effort.

The method presented in this paper is applied to solve the nonlinear Volterra-Fredholm integral equations. The results obtained by the proposed method are compared with those obtained by other methods in the literature. The numerical results obtained by the presented method are in good agreement with other methods and the exact solutions. It is also observed that the proposed method is effective and easy to implement.

The numerical solution of nonlinear Volterra-Fredholm integral equations is of great importance in various fields of science and engineering. In this paper, we present a novel approach for solving these equations using haar wavelet collocation method. The method is based on the approximation of the unknown function by a finite series of haar wavelets. The operational matrices of the integral and derivative operators with respect to haar wavelets are derived, and the integral equation is then transformed into a system of algebraic equations. The numerical results obtained by the proposed method are compared with those obtained by other methods in the literature, and it is shown that the present approach yields more accurate results with less computational effort.

The method presented in this paper is applied to solve the nonlinear Volterra-Fredholm integral equations. The results obtained by the proposed method are compared with those obtained by other methods in the literature. The numerical results obtained by the presented method are in good agreement with other methods and the exact solutions. It is also observed that the proposed method is effective and easy to implement.

The numerical solution of nonlinear Volterra-Fredholm integral equations is of great importance in various fields of science and engineering. In this paper, we present a novel approach for solving these equations using haar wavelet collocation method. The method is based on the approximation of the unknown function by a finite series of haar wavelets. The operational matrices of the integral and derivative operators with respect to haar wavelets are derived, and the integral equation is then transformed into a system of algebraic equations. The numerical results obtained by the proposed method are compared with those obtained by other methods in the literature, and it is shown that the present approach yields more accurate results with less computational effort.

The method presented in this paper is applied to solve the nonlinear Volterra-Fredholm integral equations. The results obtained by the proposed method are compared with those obtained by other methods in the literature. The numerical results obtained by the presented method are in good agreement with other methods and the exact solutions. It is also observed that the proposed method is effective and easy to implement.
April 21st, 2019 - time collocation method for Volterra Fredholm integral equations

April 27th, 2019 - Numerical solution of nonlinear mixed Volterra Fredholm integro-differential equations by two dimensional block pulse functions M. Safavi and A. A. Khajehnasiri

Abstract This paper proposes an effective numerical method to obtain the solution of the nonlinear mixed two dimensional Volterra Fredholm integro-differential equations. For

Numerical Solution of Volterra Fredholm Integral

April 28th, 2019 - In this paper we present a numerical solution of nonlinear Volterra-Fredholm integral equations using Liao wavelet collocation method Properties of Haar wavelet and its operational matrices are utilized to convert the integral equation into a system of algebraic equations solving these equations using MATLAB to compute the Haar coefficients

Numerical Solution of Nonlinear Volterra Fredholm

April 28th, 2019 - Time collocation method for Volterra Fredholm integral equations

February 1st, 2017 - In this article we present approximate solution of the two dimensional singular nonlinear mixed Volterra Fredholm integral equations (VFIE) which is deduced by using new strategy combined Laplace homotopy perturbation method LHPM

April 27th, 2019 - Numerical solution of stochastic Volterra Fredholm integral equations using Haar wavelets

February 6th, 2011 - A linear Volterra integral equation of the second kind Here are real numbers is a generally complex parameter is an unknown function are given

Numerical Solution of Nonlinear Volterra Fredholm

April 26th, 2019 - We are concerned with the analytical and numerical analysis of a nonlinear weakly singular Volterra integral equation Owing to the singularity of the solution at the origin the global convergence order of Euler's method is less than one

April 16th, 2019 - We are concerned with the analytical and numerical analysis of a nonlinear weakly singular Volterra integral equation Owing to the singularity of the solution at the origin the global convergence order of Euler's method is less than one

Numerical Solution of Nonlinear Volterra Fredholm

Numerical Solution of Nonlinear Volterra–Fredholm

April 28th, 2019 - In this paper we present a numerical solution of nonlinear Volterra-Fredholm integral equations using two dimensional Haar wavelet collocation method Properties of Haar wavelet and its operational matrices are utilized to convert the integral equation into a system of algebraic equations solving these equations using MATLAB to compute the Haar coefficients

Numerical Solution of Nonlinear Volterra Fredholm

April 28th, 2019 - In this paper we present a numerical solution of nonlinear Volterra-Fredholm integral equations using Liao wavelet collocation method Properties of Haar wavelet and its operational matrices are utilized to convert the integral equation into a system of algebraic equations solving these equations using MATLAB to compute the Haar coefficients

May 2nd, 2019 - Numerical Solution of Nonlinear Volterra Fredholm Integral Equations Utilizing Radial

Transportation Systems Advances in Intelligent Systems and Computing vol 455 Springer Cham First Online 06 November 2016

April 23rd, 2019 - In this paper we present a numerical solution of nonlinear Volterra-Fredholm integral equations using Liao wavelet collocation method Properties of Haar wavelet and its operational matrices are utilized to convert the integral equation into a system of algebraic equations solving these equations using MATLAB to compute the Haar coefficients

April 27th, 2019 - Numerical solution of nonlinear mixed Volterra Fredholm integro-differential equations by two dimensional block pulse functions M. Safavi and A. A. Khajehnasiri

April 27th, 2019 - Numerical solution of nonlinear mixed Volterra Fredholm integro-differential equations by two dimensional block pulse functions M. Safavi and A. A. Khajehnasiri

Abstract This paper proposes an effective numerical method to obtain the solution of the nonlinear mixed two dimensional Volterra Fredholm integro-differential equations. For

Numerical Solution of Volterra Fredholm Integral

April 28th, 2019 - In this paper we present a numerical solution of nonlinear Volterra-Fredholm integral equations using Liao wavelet collocation method Properties of Haar wavelet and its operational matrices are utilized to convert the integral equation into a system of algebraic equations solving these equations using MATLAB to compute the Haar coefficients

Numerical Solution of Nonlinear Volterra Fredholm

April 28th, 2019 - Time collocation method for Volterra Fredholm integral equations

February 1st, 2017 - In this article we present approximate solution of the two dimensional singular nonlinear mixed Volterra Fredholm integral equations (VFIE) which is deduced by using new strategy combined Laplace homotopy perturbation method LHPM

April 27th, 2019 - Numerical solution of stochastic Volterra Fredholm integral equations using Haar wavelets

February 6th, 2011 - A linear Volterra integral equation of the second kind Here are real numbers is a generally complex parameter is an unknown function are given

Numerical Solution of Nonlinear Volterra Fredholm

April 26th, 2019 - We are concerned with the analytical and numerical analysis of a nonlinear weakly singular Volterra integral equation Owing to the singularity of the solution at the origin the global convergence order of Euler's method is less than one

April 16th, 2019 - We are concerned with the analytical and numerical analysis of a nonlinear weakly singular Volterra integral equation Owing to the singularity of the solution at the origin the global convergence order of Euler's method is less than one

Numerical Solution of Nonlinear Volterra Fredholm

Numerical Solution of Nonlinear Volterra–Fredholm

April 28th, 2019 - In this paper we present a numerical solution of nonlinear Volterra-Fredholm integral equations using Liao wavelet collocation method Properties of Haar wavelet and its operational matrices are utilized to convert the integral equation into a system of algebraic equations solving these equations using MATLAB to compute the Haar coefficients

Numerical Solution of Nonlinear Volterra Fredholm

April 28th, 2019 - In this paper we present a numerical solution of nonlinear Volterra-Fredholm integral equations using Liao wavelet collocation method Properties of Haar wavelet and its operational matrices are utilized to convert the integral equation into a system of algebraic equations solving these equations using MATLAB to compute the Haar coefficients

May 2nd, 2019 - Numerical Solution of Nonlinear Volterra Fredholm Integral Equations Utilizing Radial

Transportation Systems Advances in Intelligent Systems and Computing vol 455 Springer Cham First Online 06 November 2016

April 23rd, 2019 - In this paper we present a numerical solution of nonlinear Volterra-Fredholm integral equations using Liao wavelet collocation method Properties of Haar wavelet and its operational matrices are utilized to convert the integral equation into a system of algebraic equations solving these equations using MATLAB to compute the Haar coefficients

April 27th, 2019 - Numerical solution of nonlinear mixed Volterra Fredholm integro-differential equations by two dimensional block pulse functions M. Safavi and A. A. Khajehnasiri

April 27th, 2019 - Numerical solution of nonlinear mixed Volterra Fredholm integro-differential equations by two dimensional block pulse functions M. Safavi and A. A. Khajehnasiri

Abstract This paper proposes an effective numerical method to obtain the solution of the nonlinear mixed two dimensional Volterra Fredholm integro-differential equations. For

Numerical Solution of Volterra Fredholm Integral

April 28th, 2019 - In this paper we present a numerical solution of nonlinear Volterra-Fredholm integral equations using Liao wavelet collocation method Properties of Haar wavelet and its operational matrices are utilized to convert the integral equation into a system of algebraic equations solving these equations using MATLAB to compute the Haar coefficients

Numerical Solution of Nonlinear Volterra Fredholm

April 28th, 2019 - Time collocation method for Volterra Fredholm integral equations

February 1st, 2017 - In this article we present approximate solution of the two dimensional singular nonlinear mixed Volterra Fredholm integral equations (VFIE) which is deduced by using new strategy combined Laplace homotopy perturbation method LHPM

April 27th, 2019 - Numerical solution of stochastic Volterra Fredholm integral equations using Haar wavelets

February 6th, 2011 - A linear Volterra integral equation of the second kind Here are real numbers is a generally complex parameter is an unknown function are given

Numerical Solution of Nonlinear Volterra Fredholm

April 26th, 2019 - We are concerned with the analytical and numerical analysis of a nonlinear weakly singular Volterra integral equation Owing to the singularity of the solution at the origin the global convergence order of Euler's method is less than one

April 16th, 2019 - We are concerned with the analytical and numerical analysis of a nonlinear weakly singular Volterra integral equation Owing to the singularity of the solution at the origin the global convergence order of Euler's method is less than one

Numerical Solution of Nonlinear Volterra Fredholm

Numerical Solution of Nonlinear Volterra–Fredholm

April 28th, 2019 - In this paper we present a numerical solution of nonlinear Volterra-Fredholm integral equations using Liao wavelet collocation method Properties of Haar wavelet and its operational matrices are utilized to convert the integral equation into a system of algebraic equations solving these equations using MATLAB to compute the Haar coefficients

Numerical Solution of Nonlinear Volterra Fredholm

April 28th, 2019 - In this paper we present a numerical solution of nonlinear Volterra-Fredholm integral equations using Liao wavelet collocation method Properties of Haar wavelet and its operational matrices are utilized to convert the integral equation into a system of algebraic equations solving these equations using MATLAB to compute the Haar coefficients
by utilizing the combined Laplace Adomian decomposition method (LADM). This technique is a convergent series from easily computable components.

Numerical Treatment of Nonlinear Volterra Fredholm Integral Equations

April 28th, 2019 - In this paper, an effective numerical method to obtain the solution of nonlinear two-dimensional mixed Volterra Fredholm integral equations for this purpose, the two-dimensional block pulse functions (2D BPFs) operational matrix of integration and differentiation has been presented. This method transforms the integro-differential equation and the given conditions into the matrix equation which can be solved by an appropriate numerical method such as Newton's method. Also, we show that the 2D BPFs method converges nonlinear two-dimensional mixed Volterra Fredholm integral equations.

Solution of Nonlinear 2D Volterra-Fredholm Integral Equations

April 10th, 2019 - Until now, triangular functions have been developed for solving various types of differential and integral equations. For example, in Babolian et al., there have been approximations using TF for solving the nonlinear Volterra-Fredholm integro-differential equations. Maleknejad in applied a triangular functions TFs method for solving the nonlinear Volterra-Fredholm integral equations.

Solution of nonlinear Volterra-Fredholm/Hammerstein

June 28th, 2018 - Rationalized Haar functions are developed to approximate the solution of the nonlinear Volterra-Fredholm/Hammerstein integral equations. The properties of rationalized Haar functions are presented. These properties together with the Newton's/Cotes nodes and Newton's/Cotes integration formulae are utilized to reduce the solution of nonlinear Volterra-Fredholm integral equations.

Numerical Solution of Nonlinear 2D Volterra-Fredholm Integral Equations

April 19th, 2019 - This paper proposed an effective numerical method to obtain the solution of nonlinear two-dimensional mixed Volterra Fredholm integro-differential equations. This method transforms the integro-differential equation and the given conditions into the matrix equation which can be solved by an appropriate numerical method such as Newton's method. Also, we show that the 2D BPFs method converges nonlinear two-dimensional mixed Volterra Fredholm integral equations.

Solution of Nonlinear Volterra-Fredholm Integral Equations

April 22nd, 2019 - In this paper, the existence and uniqueness of solution of the nonlinear Fredholm Volterra integral equation (NFVIE) is discussed and proved in the space C_1. This method is based on the early idea of Moore for Volterra integral equations.

Numerical Solution of Nonlinear Volterra-Fredholm–Hammerstein Integral Equations

March 17th, 2019 - In this work, the existence and uniqueness of solution of the nonlinear Fredholm Volterra integral equation (NFVIE) is discussed and proved in the space C_1. This method is based on the early idea of Moore for Volterra integral equations.

On the Numerical Solution of Nonlinear Volterra-Fredholm Integral Equations

April 28th, 2019 - In this paper, we discuss the numerical solvability of a class of nonlinear Volterra Fredholm integral equations. We obtain existence and uniqueness results and analyze the linearization methods for these equations under some verifiable conditions on the kernels and nonlinear functions. Also, linearization methods for initial

Approximate Solutions of Nonlinear Volterra Fredholm

April 28th, 2019 - Abstract. We study the numerical solvability of a class of nonlinear Volterra Fredholm integral equations. We obtain existence and uniqueness results and analyze the linearization methods for these equations under some verifiable conditions on the kernels and nonlinear functions. Also, we show that the 2D BPFs method converges nonlinear two-dimensional mixed Volterra Fredholm integral equations.
April 24th, 2019 - Numerical Solution of Nonlinear Weakly Singular Fredholm Volterra Integral Equations of the Second Kind by Using Sinc Collocation Methods

Khosrow Maleknejad Azadeh Ostadi Asyieh Ebrahimzadeh School of Mathematics Iran University of Science and Technology Narmak Tehran 16846 Iran

Numerical Solution of Nonlinear Fredholm Volterra

April 17th, 2019 - The integral equation method is widely used for solving many problems in mathematical physics and engineering. This article proposes a computational method for solving nonlinear Fredholm Volterra integral equations. Several numerical methods for approximating the solution of linear and nonlinear integral equations and specially Fredholm

Collocation method for linear and nonlinear Fredholm and

April 26th, 2019 - A collocation procedure is developed for the linear and nonlinear Fredholm and Volterra integral equations using the globally defined B spline and auxiliary basis functions. The solution is collocated by cubic B spline and then the integral equation

Numerical Solution of Nonlinear Fredholm

April 22nd, 2019 - approximation solutions of Second order nonlinear Fredholmi Volterra Integral Differential Equations. The solutions obtained are compared favorably with the solutions obtained by Cerdik Yaslan et al. 1 One of the advantages of the method discovered is that solutions is expressed as a truncated Canonical series then both the

Numerical Solution of Volterra Fredholm Hammerstein

April 26th, 2019 - Galerkin methods obtained numerical solution for Volterra Fredholm integral equations. A composite collocation method is offered for solving nonlinear VFHIEs in 6 In 7 the nonlinear VFHIEs are solved by using a Computational method based on Bernstein operational matrices. Yalcinbas 8 has been concerned with the Taylor polynomials of

Numerical Solution of Mixed Volterra Fredholm Integral

RH WAVELET BASES TO APPROXIMATE SOLUTION OF NONLINEAR

April 27th, 2019 - In this paper we have used a numerical method which approximated the solution of the nonlinear Fredholm Hammerstein integral equation 2 and nonlinear Volterra Hammerstein integral equation 2 based on the expansion of the solution as series of Haar functions

Numerical Solution of Nonlinear Fredholm-Volterra

April 15th, 2019 - Finally we also give some numerical examples. In this work we present a computational method for solving nonlinear Fredholm Volterra integral equations of the second kind by which the integral equation is converted into a system of linear algebraic equations by expansion of the unknown function as truncated series of well known Block Pulse functions. BPF expansion

Numerical Solution of Nonlinear Fredholm

April 28th, 2019 - If the distribution K has support only at the point x y then the integral equation reduces to a differential eigenfunction equation. In general Fredholm and Volterra integral equations can arise from a single differential equation depending on which sort of conditions are applied at the boundary of the domain of its solution

April 25th, 2019 - Galerkin methods obtained numerical solution for Volterra Fredholm integral equations. A composite collocation method is offered for solving nonlinear VFHIEs in 6 In 7 the nonlinear VFHIEs are solved by using a Computational method based on Bernstein operational matrices. Yalcinbas 8 has been concerned with the Taylor polynomials of

April 26th, 2019 - A collocation procedure is developed for the linear and nonlinear Fredholm and Volterra integral equations using the globally defined B spline and auxiliary basis functions. The solution is collocated by cubic B spline and then the integral equation

April 22nd, 2019 - approximation solutions of Second order nonlinear Fredholmi Volterra Integral Differential Equations. The solutions obtained are compared favorably with the solutions obtained by Cerdik Yaslan et al. 1 One of the advantages of the method discovered is that solutions is expressed as a truncated Canonical series then both the

RH WAVELET BASES TO APPROXIMATE SOLUTION OF NONLINEAR

April 27th, 2019 - In this paper we have used a numerical method which approximated the solution of the nonlinear Fredholm Hammerstein integral equation 2 and nonlinear Volterra Hammerstein integral equation 2 based on the expansion of the solution as series of Haar functions

April 15th, 2019 - Finally we also give some numerical examples. In this work we present a computational method for solving nonlinear Fredholm Volterra integral equations of the second kind by which the integral equation is converted into a system of linear algebraic equations by expansion of the unknown function as truncated series of well known Block Pulse functions. BPF expansion

April 28th, 2019 - If the distribution K has support only at the point x y then the integral equation reduces to a differential eigenfunction equation. In general Fredholm and Volterra integral equations can arise from a single differential equation depending on which sort of conditions are applied at the boundary of the domain of its solution

April 25th, 2019 - Galerkin methods obtained numerical solution for Volterra Fredholm integral equations. A composite collocation method is offered for solving nonlinear VFHIEs in 6 In 7 the nonlinear VFHIEs are solved by using a Computational method based on Bernstein operational matrices. Yalcinbas 8 has been concerned with the Taylor polynomials of

April 26th, 2019 - A collocation procedure is developed for the linear and nonlinear Fredholm and Volterra integral equations using the globally defined B spline and auxiliary basis functions. The solution is collocated by cubic B spline and then the integral equation

April 22nd, 2019 - approximation solutions of Second order nonlinear Fredholmi Volterra Integral Differential Equations. The solutions obtained are compared favorably with the solutions obtained by Cerdik Yaslan et al. 1 One of the advantages of the method discovered is that solutions is expressed as a truncated Canonical series then both the

RH WAVELET BASES TO APPROXIMATE SOLUTION OF NONLINEAR

April 27th, 2019 - In this paper we have used a numerical method which approximated the solution of the nonlinear Fredholm Hammerstein integral equation 2 and nonlinear Volterra Hammerstein integral equation 2 based on the expansion of the solution as series of Haar functions

April 15th, 2019 - Finally we also give some numerical examples. In this work we present a computational method for solving nonlinear Fredholm Volterra integral equations of the second kind by which the integral equation is converted into a system of linear algebraic equations by expansion of the unknown function as truncated series of well known Block Pulse functions. BPF expansion

April 28th, 2019 - If the distribution K has support only at the point x y then the integral equation reduces to a differential eigenfunction equation. In general Fredholm and Volterra integral equations can arise from a single differential equation depending on which sort of conditions are applied at the boundary of the domain of its solution